The
possibility of this gas being present in the atmosphere of the seventh planet
had long been debated, but has now been confirmed for the first time by
observations at a telescope on Hawaii. The malodorous gas was detected high
above the giant planet's cloud tops. The findings could shed important new
light on how the outer planets formed.
A team of
researchers have published their results in the journal Nature Astronomy.
Despite previous observations by ground telescopes and the Voyager 2
spacecraft, the composition of Uranus' atmosphere had remained unclear.
Scientists have long wondered whether hydrogen sulphide (H₂S) or ammonia (NH₃)
dominate the ice giant's cloud deck, but have lacked definitive evidence either
way.
The data
were obtained with the Near-Infrared Integral Field Spectrometer (NIFS)
instrument on the Gemini North telescope on Hawaii's Mauna Kea summit. The
spectroscopic measurements break infrared light from Uranus into its component
wavelengths. Bands in the resulting spectrum known as absorption lines, where
the gas absorbs infrared light coming from the Sun, allowed the scientists to
“fingerprint” components of Uranus' atmosphere.
“Now, thanks to improved hydrogen sulphide absorption-line data and the wonderful Gemini spectra, we have the fingerprint which caught the culprit,” said co-author Patrick Irwin, from the University of Oxford.
The
detection of hydrogen sulphide high in Uranus' cloud deck, sets up a contrast
with inner gas giant planets such as Jupiter and Saturn. The bulk of Jupiter
and Saturn's upper clouds are instead comprised of ammonia ice. The researchers
say these differences in atmospheric composition shed light on questions about
the planets' formation and history. Co-author Dr Leigh Fletcher, from the
University of Leicester, said that these differences were probably imprinted
early on in the history of these worlds.
He explained
that the balance between different gases in the atmospheres of these planets
was probably determined by the conditions where they formed in the early Solar
System. According to Dr Fletcher, when a cloud deck forms by condensation, it
locks away the cloud-forming gas in a deep internal reservoir, hidden away
beneath the levels that we can usually see with our telescopes.
“Only a tiny amount remains above the clouds as a saturated vapour... and this is why it is so challenging to capture the signatures of ammonia and hydrogen sulphide above cloud decks of Uranus,” he said. “The superior capabilities of Gemini finally gave us that lucky break.”
Glenn Orton,
of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, who worked on the study,
said:
“We've strongly suspected that hydrogen sulphide gas was influencing the millimetre spectrum of Uranus for some time, but we were unable to attribute the absorption needed to it uniquely. Now, that part of the puzzle is falling into place as well.”
Dr Irwin
explained:
“If an unfortunate human were ever to descend through Uranus's clouds, they would be met with very unpleasant and odiferous conditions. Suffocation and exposure in the negative 200 degrees Celsius atmosphere made of mostly hydrogen, helium, and methane would take its toll long before the smell.’
Post A Comment:
0 comments: